City Cab, Inc., uses two dispatchers to handle requests for service and to dispatch the cabs.  The telephone calls that are made to City Cab use a common telephone number.  When both dispatchers are busy, the caller hears a busy signal; no waiting is allowed.  Callers who receive a busy signal can call back later or call another cab company for service.  Assume that the arrival of calls follows a Poisson distribution, with a mean of 40 calls per hour, and that the call handling time follows an exponential probability distribution with a mean service time of 2 minutes.  Based on this information, answer the following questions.

What percentage of the time are both dispatchers idle?

Don't use plagiarized sources. Get Your Custom Essay on
Just from \$13/Page

What percentage of the time are both dispatchers busy?

What is the probability that a caller will receive a busy signal if 2, 3, or 4 dispatchers are used?

If management wants no more than 12% of the callers to receive a busy signal, how many dispatchers should be used?

Suppose the service time distribution is not exponential, it follows some other distribution such as a normal, but the mean service time remains at 2 minutes.  Does this make any difference in the model used and in the results?  Explain.

Grab A 14% Discount on This Paper
Pages (550 words)
Approximate price: -
Paper format
• 275 words per page
• 12 pt Arial/Times New Roman
• Double line spacing
• Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Try it now!

Total price:
\$0.00

How it works?